IREP after BEIR VII

Presentation to the Veterans' Advisory Board on Dose Reconstruction, January 12, 2006

Charles Land Radiation Epidemiology Branch Division of Cancer Epidemiology and Genetics National Cancer Institute

Overview

- IREP is an example of quantitative uncertainty analysis (QUA)
 - Ionizing radiation is a known and wellquantified cancer risk factor
 - Risk estimates are uncertain
 - But we know a lot about these uncertainties
 - And we can address implications for risk

Elements of the approach

- **5** Take a problem apart
- 5 Identify component parts
- 5 Evaluate their uncertainties and how they fit together
- 5 Evaluate the overall uncertainty of the solution

Legal Basis for Adjudication of (Some) Compensation Claims

- 5 IREP is mandated in the US for adjudication of some claims against the government for radiation-related cancer
- 5 Energy Employees' Occupational Illness Compensation Program Act of 2000 (EEOICPA), P.L. 106-398

Rationale

- 5 We know a lot about radiation-related cancer risk in exposed populations
- S We can estimate site-specific ERR, by exposure history and age following exposure
- In an exposed population, the proportion of cancers that would not have occurred in the absence of exposure is estimated by Assigned Share, AS = ERR/(1+ERR)
- 5 This population quantity can be used as a guide for adjudication of individual cases

NIH Radio-Epidemiological Tables Background

5 1985 NIH report: Congressional mandate (P.L. 97-414)

- Requiring periodic update
- Essentially, summary of mainstream scientific information
- VA the main user: claims based on service-related exposure
- CIRRPC screening tool: upper uncert. limit for AS = ERR/(1+ERR)
- VA claim adjudication based on CIRRPC screening tool at 99%

5 2003 NCI/CDC report requested by VA

- Intended as an interim update, requiring revision after BEIR VII and new A-bomb survivor data
- Targeted to VA requirements, eg, 99% upper uncertainty limit

2003 NCI/CDC Report

- 5 Based on scientific consensus
 - Small working group (NCI, CDC, SENES Oak Ridge)
 - Group of scientific and lay advisors
 - Formal IOM expert review panel
- 5 Calculations based mainly on A-bomb survivor cancer incidence data
- 5 Emphasis on uncertainty analysis
- Interactive Radio Epidemiological Program (IREP) replaced NIH tables

EEOICPA

5 Enacted December 2000; P.L. 106-398

- DOE and DOE contractor employees
- Adjudication by DOL
- NIOSH to provide doses, support
- Use NIH tables as may be updated
- Mandated use of upper 99% limits on AS
- IREP modified by NIOSH for administrative reasons (NIOSH-IREP)
 - A few differences for certain cancer sites

Components of IREP: Input

5 Individual characteristics

- Sex
- date (year) of birth,
- type of cancer
- date (year) of diagnosis
- Smoking history (if lung cancer)
- 5 Exposure history: for each exposure,
 - Date (year)
 - Dose estimate and its uncertainty distribution
 - Radiation quality (photon, neutron, energy, etc.)
 - Chronic or acute exposure

IREP: Calculation components

- For each exposure, compute ERR (with uncertainty) for specified diagnosis & date, and apply
 - Uncertain minimum latent period
 - Uncertain radiation effectiveness factor for specified radiation
 - Uncertain DDREF for chronic or low-dose, acute exposures
 - Adjustment for smoking history, if applicable
- **5** Sum ERR over exposures
- Apply uncertain transfer factor, if applicable, for ratio of Japanese to US cancer rates
- S Combine uncertainties (Monte Carlo simulation)
- Transform ERR and its uncertainty to Assigned Share: AS = ERR/(1+ERR)

BEIR VII (in press)

- 5 A highly authoritative review of mainstream science on radiation-related risk
- Solution States Stat
 - Projection over time since exposure is more secure
- 5 Also, data from other exposed populations
- 5 Dose-response models generally similar to those used for IREP, different in some details

BEIR VII (cont)

- 5 Considerable attention to DDREF and population transfer
- 5 Based additive transfer on EAR rather than on a multiple of ERR determined by population rate ratios
- 5 Tended to use fixed, rather than random, mixture probabilities
 - e.g., .33 × EAR + .67 × ERR, rather than
 - $p \times EAR + (1 p) \times ERR$, where p is random

Conclusions

5 IREP can be improved by adopting the models and risk estimates of BEIR VII

- 5 Because the BEIR VII estimates are based on more data, the uncertainties in IREP probably will be reduced
- 5 Unless the new estimates are higher, sitespecific upper uncertainty limits for AS probably will be lower than at present

Links to IREP

- **5** The DCEG web page is at <u>http://www.dceg.cancer.gov/</u>
- 5 Click on "Tools & Resources" and then on "Algorithms for Expression of Risk", under "Radiation Epidemiology Branch tools"
- **5** This gets a paragraph of text.
- 5 In 4th line, click <u>NCI Monograph</u> to get .pdf file of NIH-CDC report
- 5 Clicking on Judy Patt (pattj@mail.nih.gov) allows you to order a bound copy of the report (at no charge)
- <u>http://www.irep.nci.nih.gov/</u> brings up the original IREP program, which you can run online
- 5 In the last line, <u>NIOSH-IREP</u> takes you to the NIOSH OCAS web site